Министерство науки и высшего образования РФ

ФГБОУ ВО Уральский государственный лесотехнический университет

Инженерно-технический институт

Кафедра технологических машин и технологии машиностроения

Рабочая программа дисциплины

включая фонд оценочных средств и методические указания для самостоятельной работы обучающихся

Б1.Б.17 – НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ И ИНЖЕНЕРНАЯ ГРАФИКА

Направление подготовки 23.03.01 «Технология транспортных процессов» Направленность (профиль) — «Организация перевозок и безопасность движения»

Квалификация – бакалавр

Количество зачётных единиц (часов) – 4 (144)

г. Екатеринбург, 2021

Разработчик: к.т.н., доцент/Н.В.Куцубина/
Рабочая программа утверждена на заседании кафедры технологических машин и технологии машиностроения
(протокол № 9 от «4» марта 2021 года).
Зав. кафедрой/Н. В. Куцубина/
Рабочая программа рекомендована к использованию в учебном процессе методической комиссией инженерно-технического института (протокол № 6 от «04» февраля 2021 года). Председатель методической комиссии ИТИ
Рабочая программа утверждена директором инженерно-технического института Директор ИТИ «

Оглавление

1. Общие положения	4
2. Перечень планируемых результатов обучения по дисциплине, соотнесенных	c
планируемыми результатами освоения образовательной программы	4
3. Место дисциплины в структуре образовательной программы	5
4. Объем дисциплины в зачетных единицах с указанием количества академических часо)В,
выделенных на контактную работу обучающихся с преподавателем (по видам учебны	ΙX
занятий) и на самостоятельную работу обучающихся	5
5. Содержание дисциплины, структурированное по темам (разделам)	6
с указанием отведенного на них количества академических часов	6
5.1. Трудоемкость разделов дисциплины	6
5.2. Содержание занятий лекционного типа	7
5.3. Темы и формы занятий семинарского типа	8
5.4 Детализация самостоятельной работы	9
6. Перечень учебно-методического обеспечения по дисциплине	9
7. Фонд оценочных средств для проведения промежуточной аттестации	
обучающихся по дисциплине	
7.1. Перечень компетенций с указанием этапов их формирования	
в процессе освоения образовательной программы	11
7.2. Описание показателей и критериев оценивания компетенций на различных этапах и	ИХ
формирования, описание шкал оценивания	12
7.3. Типовые контрольные задания или иные материалы, необходимые для оценки знани	Ιй,
умений, навыков и (или) опыта деятельности, характеризующих этапы формировани	ИЯ
компетенций в процессе освоения образовательной программы	
7.4. Соответствие шкалы оценок и уровней сформированных компетенций	
8. Методические указания для самостоятельной работы обучающихся	
9. Перечень информационных технологий, используемых при осуществлении	21
образовательного процесса по дисциплине	21
10. Описание материально-технической базы, необходимой	
для осуществления образовательного процесса по дисциплине	21

1. Обшие положения

Дисциплина «**Начертательная геометрия и инженерная графика**», относится к блоку Б1 учебного плана, входящего в состав образовательной программы высшего образования 23.03.01 — Технология транспортных процессов (профиль — Организация перевозок и безопасность движения).

Нормативно-методической базой для разработки рабочей программы учебной дисциплины «Начертательная геометрия и инженерная графика», являются:

- Федеральный закон «Об образовании в Российской Федерации», утвержденный приказом Минобрнауки РФ от 29.12.2012 № 273-Ф3;
- Приказ Минобрнауки России от 05.04.2017 № 301«Об утверждении порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры»;
- Федеральный государственный образовательный стандарт высшего образования (ФГОС ВО) по направлению подготовки 23.03.01 «Технология транспортных процессов» (уровень бакалавриата), утвержденный приказом Министерства образования и науки РФ от 06.03.2015 № 165;
- Учебные планы образовательной программы высшего образования направления 23.03.01 Технология транспортных процессов (профиль Организация перевозок и безопасность движения), подготовки бакалавров по очной и заочной формам обучения, одобренные Ученым советом УГЛТУ (протокол от 20.06.2019 № 6).

Обучение по образовательной программе 23.03.01 — Технология транспортных процессов (профиль — Организация перевозок и безопасность движения) осуществляется на русском языке.

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемыми результатами обучения по дисциплине, являются знания, умения, владения и/или опыт деятельности, характеризующие этапы/уровни формирования компетенций и обеспечивающие достижение планируемых результатов освоения образовательной программы в целом.

Цель дисциплины — формирование системы фундаментальных знаний об общих методах построения и чтения чертежей, способах начертательной геометрии и навыков их применения при идентификации, формулировании и решении технических и технологических проблем эксплуатации транспортно-технологических машин и комплексов.

Задачи дисциплины:

- развитие пространственного мышления и навыков конструктивно-геометрического моделирования;
- овладение общими методами составления конструкторской документации, выполнения и чтения чертежей различного назначения, эскизов деталей и узлов транспортно-технологических машин и комплексов;
 - использование стандартов и справочной литературы.

Процесс изучения дисциплины направлен на формирование следующих общепрофессиональных компетенций:

ОПК-3 - способностью применять систему фундаментальных знаний (математических, естественнонаучных, инженерных и экономических) для идентификации, формулирования и решения технических и технологических проблем в области технологии, организации, планирования и управления технической и коммерческой эксплуатацией транспортных систем.

В результате изучения дисциплины обучающийся должен: знать:

- виды проецирования; задание и изображение прямой, плоскости, поверхности на чертеже; правила выполнения видов, разрезов, сечений предметов; понятия рабочего чертежа детали и сборочного чертежа машиностроительного узла;

уметь:

- применять правила ЕСКД для выполнения чертежей; определять величины геометрических объектов и расстояний, их взаимное положение для решения позиционных и метрических задач;
- выполнять построения линий пересечения поверхностей и их разверток; видов, разрезов, сечений предметов;
- составлять и читать рабочие и сборочные чертежи изделий и конструкторские документы транспортно-технологических машин и комплексов;
- выполнять деталирование чертежей общих видов.

владеть:

1

- навыками оформления конструкторской документации, выполнения проекционного чертежа предмета и его аксонометрии, выполнения эскизов и рабочих чертежей деталей и сборочных единиц, в том числе машиностроительных узлов транспортно-технологических машин с применением информационных технологий.

3. Место дисциплины в структуре образовательной программы

Данная учебная дисциплина относится к обязательным дисциплинам базовой части, что означает формирование в процессе обучения у бакалавра общепрофессиональных знаний и компетенций в рамках направления.

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин ОПОП.

Перечень обеспечивающих, сопутствующих и обеспечиваемых дисциплин

- Сопутствующие Математика		Обеспечиваемые		
		Физика		
-		Теоретическая механика		
-		Моделирование транспортных процессов		
		Защита выпускной квалификационной работы,		
		включая подготовку к процедуре защиты и		
_		процедуру защиты		

Указанные связи дисциплины дают обучающемуся системное представление о комплексе изучаемых дисциплин в соответствии с ФГОС ВО, что обеспечивает требуемый теоретический уровень и практическую направленность в системе обучения и будущей деятельности выпускника.

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины

Вид учебной работы	Всего академ	ических часов
	очная форма	заочная форма
Контактная работа с преподавателем:	52	10
лекции (Л)	22	4
практические занятия (ПЗ)	30	6
лабораторные работы (ЛР)	-	-
промежуточная аттестация (ПА)	-	-

Вид учебной работы	Всего академических часов		
	очная форма	заочная форма	
Самостоятельная работа обучающихся	92	134	
подготовка к текущему контролю знаний	56	125	
Подготовка к промежуточной аттестации	36	9	
Вид промежуточной аттестации:	Экзамен	Экзамен	
Общая трудоемкость	4/144	4/144	

^{*}Контактная работа обучающихся с преподавателем, в том числе с применением дистанционных образовательных технологий, включает занятия лекционного типа, и (или) занятия семинарского типа, лабораторные занятия, и (или) групповые консультации, и (или) индивидуальную работу обучающегося с преподавателем, а также аттестационные испытания промежуточной аттестации. Контактная работа может включать иные виды учебной деятельности, предусматривающие групповую и индивидуальную работу обучающихся с преподавателем. Часы контактной работы определяются Положением об организации и проведении контактной работы при реализации образовательных программ высшего образования, утвержденным Ученым советом УГЛТУ от 25 февраля 2020 года.

5. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов

5.1. Трудоемкость разделов дисциплины очная форма обучения

№ п/п	Наименование раздела дисциплины	Л	ПЗ	ЛР	Всего контактной	Самостоятельная работа
	П				работы	
1	Предмет начертательной геометрии и инженерной графики. Методы проецирования. Точка.	2	1	-	3	4
2	Прямая линия. Плос- кость.	2	1	-	3	4
3	Позиционные задачи.	2	2	-	4	4
4	Способы преобразования комплексного чертежа.	2	2	-	4	4
5	Сечения поверхностей плоскостью.	1	2	-	3	4
6	Пересечение и развертки поверхностей.	1	2	-	3	4
7	Общие правила выполнения чертежей по ЕСКД	2	2	-	4	4
8	Проекционное черчение	2	2	-	4	4
9	Соединения.	2	4	-	6	6
10	Эскизы и рабочие чертежи деталей; спецификация и сборочный чертёж изделия.	2	4	-	6	6
11	Деталирование	2	4	-	6	6
12	Основы машинной графи- ки	2	4	-	6	6
Итого по разделам:		22	30	-	52	56
	готовка к промежуточной стации	-	-	-	-	36
	Итого: 144					

заочная форма обучения

№	Наименование раздела дис-	Л	П3	ЛР	Всего	Самостоятельная
Π/Π	циплины				контактной	работа
					работы	
	Предмет начертательной					
1	геометрии и инженерной	0,25	0,25	_	0,5	7
	графики. Методы проецирования. Точка.	,	,			
2	Прямая линия. Плоскость.	0,25	0,25	_	0,5	8
3	-	0,25	0,23	-	0,75	8
3	Позиционные задачи.	0,23	0,3	-	0,73	0
4	Способы преобразования	0,25	0,5	_	0,75	8
	комплексного чертежа.					
5	Сечения поверхностей плос-	0,5	-	_	0,5	6
	Костью.					
6	Пересечение и развертки поверхностей.	0,25	-	-	0,25	6
7	Общие правила выполнения	0,25	0,5	_	0,75	8
	чертежей по ЕСКД		1		·	0
8	Проекционное черчение	0,5	1	-	1,5	8
9	Соединения.	0,25	0,5	-	0,75	8
	Эскизы и рабочие чертежи					
10	деталей; спецификация и	0,5	1	-	1,5	8
	сборочный чертёж изделия.					
11	Деталирование	0,5	1		1,5	40
12	Основы машинной графики	0,25	0,5		0,75	10
Итого по разделам:		4	6	-	10	125
Под	готовка к промежуточной ат-	_	_	_	_	9
тест	ации		-	_	_	,
	Итого: 144					

5.2. Содержание занятий лекционного типа

- 1. Предмет начертательной геометрии и инженерной графики. Методы проецирования. Точка. Основные требования стандартов к графическому оформлению чертежей. Центральное, параллельное и прямоугольное проецирование. Свойства прямоугольного проецирования. Образование чертежа. Обратимость чертежа. Образование чертежа на двух и трех плоскостях проекций. Теорема о проецировании прямого угла. Комплексный чертеж точки. Проекции точек на две и три плоскости проекций. Положение точки относительно плоскостей проекций.
- **2. Прямая линия**. **Плоскость**. Задание и изображение на чертеже. Положение относительно плоскостей проекций. Две прямые. Изображение пересекающихся, параллельных и скрещивающихся прямых. Конкурирующие точки. Способ прямоугольного треугольника. Задание плоскости на чертеже. Положение относительно плоскостей проекций. Линии уровня плоскости.
- **3. Позиционные задачи**. Алгоритм решения. Взаимное положение прямой и плоскости: прямая параллельна плоскости; прямая перпендикулярна плоскости; прямая пересекается с плоскостью. Взаимное положение плоскостей: плоскость параллельна заданной; плоскость перпендикулярна заданной; пересечение плоскостей. Пересечение прямой с поверхностью.
- **4.** Способы преобразования комплексного чертежа. Метрические задачи. Способ перемены плоскостей проекций. исходные задачи преобразования чертежа.

- **5.** Сечения поверхностей плоскостью. Определение и образование поверхности. Приближенная классификация (в зависимости от формы и характера движения образующей). Задание и изображение на чертеже. Поверхности торсовые, винтовые, гранные и вращения. Задание и изображение на чертеже. Поверхности с вырезом.
- **6.** Пересечение и развертка поверхностей. Способ секущих плоскостей, пересечение соосных поверхностей вращения методом сфер. Основные свойства разверток поверхностей. Примеры разверток многогранников, цилиндрических и конических поверхностей.
- **7. Общие правила выполнения чертежей по ЕСКД.** Конструкторская документация и ее оформление
- **8. Проекционное черчение**. Изображения виды, разрезы, сечения. Аксонометрические проекции.
 - 9. Соединения. Изображение резьбовых, шпоночных, сварных и других соединений.
- 10. Эскизы и рабочие чертежи деталей; спецификация и сборочный чертёж изделия.
 - 11. Деталирование выполнение рабочих чертежей по чертежу общего вида.
- **12. Основы машинной графики**. Проработка команд создания границ рисунка, установки формата единиц, разделения чертежа по слоям, выход из AutoCAD. Проработка команд построения примитивов и редактирования объектов. Проработка команд простановки размеров и написания текста.

5.3. Темы и формы занятий семинарского типа Учебным планом по дисциплине предусмотрены практические занятия.

No	Наименование раздела дисципли-	Форма проведения	Трудоемн	сость, час.
14⊡	ны (модуля)	занятия	очная	заочная
1	Предмет начертательной геометрии и инженерной графики. Методы проецирования. Точка.	Графическая работа	1	0,25
2	Прямая линия. Плоскость.	Графическая работа	1	0,25
3	Позиционные задачи.	Графическая работа	2	0,5
4	Способы преобразования комплексного чертежа.	Графическая работа	2	0,5
5	Сечения поверхностей плоскостью.	Графическая работа	2	-
6	Пересечение и развертки поверхностей.	Графическая работа	2	-
7	Общие правила выполнения чертежей по ЕСКД.	Графическая работа	2	0,5
8	Проекционное черчение.	Графическая работа	2	1
9	Соединения.	Графическая работа	4	0,5
10	Эскизы и рабочие чертежи деталей; спецификация и сборочный чертёж изделия.	Графическая работа	4	1
11	Деталирование.	Графическая работа	4	1
12	Основы машинной графики.	Графическая работа	4	0,5
Итог	го:	30	6	

5.4 Детализация самостоятельной работы

No	Наименование раздела	Вид самостоятельной	Трудоем	кость, час
	дисциплины (модуля)	работы	очная	заочная
1	Предмет начертательной геометрии и инженерной графики. Методы проецирования. Точка.	Подготовка к текущему контролю	4	7
2	Прямая линия. Плоскость.	Подготовка к текущему контролю	4	8
3	Позиционные задачи.	Подготовка к текущему контролю	4	8
4	Способы преобразования ком-плексного чертежа.	Подготовка к текущему контролю	4	8
5	Сечения поверхностей плоскостью.	Подготовка к текущему контролю	4	6
6	Пересечение и развертки поверхностей.	Подготовка к текущему контролю	4	6
7	Общие правила выполнения чертежей по ЕСКД.	Подготовка к текущему контролю	4	8
8	Проекционное черчение.	Подготовка к текущему контролю	4	8
9	Соединения.	Подготовка к текущему контролю	6	8
10	Эскизы и рабочие чертежи деталей; спецификация и сборочный чертёж изделия.	Подготовка к текущему контролю.	6	8
11	Деталирование.	Подготовка к текущему контролю. Выполнение контрольной работы для студентов заочной формы обучения.	6	40
12	Основы машинной графики.	Подготовка к текущему контролю	6	10
13	Промежуточный контроль	Подготовка к экзамену	36	9
Итог	го:		92	134

6. Перечень учебно-методического обеспечения по дисциплине

Основная и дополнительная литература

No	Автор, наименование	Год изда- ния	Примеча- ние
	Основная литература		
1	Тарасов, Б. Ф. Начертательная геометрия : учебник / Б. Ф. Тарасов, Л. А. Дудкина, С. О. Немолотов. — Санкт-Петербург : Лань, 2021. — 256 с. — ISBN 978-5-8114-1321-8. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/168411. — Режим доступа: для авториз. пользователей.	2021	Полнотек- стовой доступ при входе по логину и паролю*

No	Автор, наименование	Год изда- ния	Примеча- ние
2	Бакулина, И. Р. Начертательная геометрия : учебное пособие / И. Р. Бакулина, О. А. Моисеева. — Йошкар-Ола : ПГТУ, 2020. — 78 с. — ISBN 978-5-8158-2200-9. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/170666. — Режим доступа: для авториз. пользователей.	2020	Полнотек- стовой доступ при входе по логину и паролю*
3	Варенцова, Т. А. Начертательная геометрия : учебное пособие / Т. А. Варенцова, Г. Н. Уполовникова. — Тольятти : ТГУ, 2019. — 184 с. — Текст : электронный // Лань : электроннобиблиотечная система. — URL: https://e.lanbook.com/book/139676. — Режим доступа: для авториз. пользователей.	2019	Полнотек- стовой доступ при входе по логину и паролю*
4	Григорьева, О. П. Выполнение эскизов деталей сборочной единицы. Выполнение сборочного чертежа: учебное пособие / О. П. Григорьева, И. Ю. Селяков. — Мурманск: МГТУ, 2020. — 92 с. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/176304. — Режим доступа: для авториз. пользователей.	2020	Полнотекстовой доступ при входе по логину и паролю*
5	Уласевич, З. Н. Инженерная графика: практикум: учебное пособие / З. Н. Уласевич. — 2-е изд., перераб. — Минск: Вышэйшая школа, 2020. — 206 с. — ISBN 978-985-06-3156-5. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/174674. — Режим доступа: для авториз. пользователей.	2020	Полнотек- стовой доступ при входе по логину и паролю*
6	ЗD-моделирование в инженерной графике: учебное пособие / С. В. Юшко, Л. А. Смирнова, Р. Н. Хусаинов, В. В. Сагадеев. — Казань: КНИТУ, 2017. — 272 с. — ISBN 978-5-7882-2166-3. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/101868. — Режим доступа: для авториз. пользователей.	2017	Полнотек- стовой доступ при входе по логину и паролю*
	Дополнительная литература		
1	Раков, В.Л. Приложение трехмерных моделей к задачам начертательной геометрии: учебное пособие / В.Л. Раков. — Санкт-Петербург: Лань, 2014. — 128 с. — ISBN 978-5-8114-1698-1. — Текст: электронный // Электронно-библиотечная система «Лань»: [сайт]. — URL: https://e.lanbook.com/book/50162 — Режим доступа: для авториз. пользователей.	2014	Полнотек- стовой доступ при входе по логину и паролю*
2	Ли, В. Г. Инженерная графика: учебное пособие / В. Г. Ли, С. А. Дорошенко. — Ростов-на-Дону: ЮФУ, 2016. — 141 с. — ISBN 978-5-9275-2067-1. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/114413. — Режим доступа: для авториз. пользователей.	2016	Полнотек- стовой доступ при входе по логину и паролю*
3	Бородин, Н. А. Начертательная геометрия и инженерная графика: учебное пособие / Н. А. Бородин, А. В. Князев, С. В. Зимари. — Воронеж: ВГЛТУ, 2017. — 100 с. — ISBN 978-5-7994-	2017	Полнотек- стовой доступ при

№	Автор, наименование	Год изда- ния	Примеча- ние
	0790-2. — Текст: электронный // Лань: электронно- библиотечная система. — URL: https://e.lanbook.com/book/118694. — Режим доступа: для авто-		входе по логину и паролю*
	риз. пользователей.		паролю

^{*-} предоставляется каждому студенту УГЛТУ.

Функционирование электронной информационно-образовательной среды обеспечивается соответствующими средствами информационно-коммуникационных технологий.

Электронные библиотечные системы

Каждый обучающийся обеспечен доступом к электронной библиотечной системе УГЛТУ (http://lib.usfeu.ru/), ЭБС Издательства Лань http://e.lanbook.com/, ЭБС Университетская библиотека онлайн http://biblioclub.ru/, содержащих издания по основным изучаемым дисциплинам и сформированных по согласованию с правообладателями учебно-методической литературы.

Справочные и информационные системы

- 1. Справочно-правовая система «Консультант Плюс». Договор №25/12-25-бн/0023/19-223-03 об оказании информационных услуг от 25 января 2019.
- 2. Информационно-правовой портал Гарант. Режим доступа: http://www.garant.ru/
- 3. База данных Scopus компании Elsevier B.V. https://www.scopus.com/ Сублицензионный договор № Scopus/1114-02558/18-06 от 10.05.2018 г.

Профессиональные базы данных

- 1. ГОСТ Эксперт. Единая база ГОСТов РФ (http://gostexpert.ru/);
- 2. информационные базы данных Росреестра (https://rosreestr.ru/);
- 3. ФБУ РФ Центр судебной экспертизы (http://www.sudexpert.ru/);
- 4. Транспортный консалтинг (http://trans-co.ru/?page_id=13);
- 5. Рестко Холдинг (https://www.restko.ru/).

Нормативно-правовые акты

- 1. Гражданский кодекс Российской Федерации от 30.11.1994 года N51-Ф3.
- 2. Федеральный закон «О защите прав потребителей» от 07.02.1992 N 2300-1 (ред. от 08.12.2020).
- 3. Федеральный закон «Об обеспечении единства измерений» от 26.06.2008 N 102-Ф3.
- 4. Федеральный закон «Об информации, информационных технологиях и о защите информации» от $27.07.2006~N~149-\Phi 3$.

7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Формируемые компетенции	Вид и форма контроля
ОПК-3 - способностью применять систему фун-	Промежуточный контроль: кон-
даментальных знаний (математических, естествен-	трольные задания к экзамену

нонаучных, инженерных и экономических) для идентификации, формулирования и решения технических и технологических проблем в области технологии, организации, планирования и управления технической и коммерческой эксплуатацией транспортных систем

Текущий контроль:

практические задания, задания в тестовой форме

7.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Критерии оценивания контрольных заданий к экзамену (промежуточный контроль формирования компетенций ОПК-3):

отпично: выполнены все задания, обучающийся четко и без ошибок ответил на все контрольные вопросы.

хорошо: выполнены все задания, обучающийся с небольшими ошибками ответил на все контрольные вопросы.

удовлетворительно: выполнены все задания с замечаниями, обучающийся ответил на все контрольные вопросы с замечаниями.

неудовлетворительно: обучающийся не выполнил или выполнил неправильно задания, ответил на контрольные вопросы с ошибками или не ответил на конкретные вопросы.

Критерии оценивания выполнения заданий в тестовой форме (текущий контроль формирования компетенций ОПК-3)

По итогам выполнения тестовых заданий оценка производится по четырехбалльной шкале. При правильных ответах на:

86-100% заданий – оценка «*отлично*»;

71-85% заданий – оценка «хорошо»;

51-70% заданий – оценка «удовлетворительно»:

менее 51% - оценка «неудовлетворительно».

Критерии оценивания практических заданий (текущий контроль формирования компетенций ОПК-3):

отпично: выполнены все задания, обучающийся четко и без ошибок ответил на все контрольные вопросы.

хорошо: выполнены все задания, обучающийся с небольшими ошибками ответил на все контрольные вопросы.

удовлетворительно: выполнены все задания с замечаниями, обучающийся ответил на все контрольные вопросы с замечаниями.

неудовлетворительно: обучающийся не выполнил или выполнил неправильно задания, ответил на контрольные вопросы с ошибками или не ответил на конкретные вопросы.

7.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Контрольные задания к экзамену

- 1. Поверхности с вырезом. Построить недостающие проекции поверхности со сквозным вырезом.
- 2. Относительное положение прямой и плоскости. Через точку М провести прямую, параллельную двум заданным плоскостям.
- 3. Развертывание пирамидальных и конических поверхностей. Развернуть боковую поверхность заданной пирамиды с нанесением линии выреза.

- 4. Относительное положение прямой и плоскости. В точке М пересечения медиан треугольника ABC восстановить перпендикуляр n к плоскости ABC и определить его видимость относительно плоскости.
- 5. Сечение поверхностей плоскостью. Определить натуральную величину сечения заданной поверхности плоскостью.
- 6. Построить линию пересечения двух заданных поверхностей.
- 7. Позиционные задачи. Пересечение прямой с плоскостью. Найти точку пересечение прямой L с заданной плоскостью и определить видимость.
- 8. Метрические задачи. Построить точку М, симметричную заданной точке N, относительно плоскости T(ABC).
- 9. Пересечение поверхностей. Сущность способа вспомогательных секущих плоскостей при построении линии пересечения поверхностей. Построить линию пересечения заданных поверхностей.
- 10. Выполнить деталировку по чертежу общего вида.
- 11. Выполнить резьбовое соединение деталей.

Практические задания (графические работы) к текущему контролю

- 1. Выполнить чертеж цапфы с соблюдением требований стандартов ЕСКД.
- 2. Построить линию пересечения треугольников ABC и DEF, определить видимость сторон (формат A3).
- 3. Построить три проекции поверхности со сквозным вырезом. Определить натуральную величину сечения поверхности плоскостью (формат А3).
- 4. Построить линию пересечения заданных поверхностей (формат А3).
- 5. Построить развертку одной из поверхностей (формат А3).
- 6. Построить три проекции деталей по двум заданным. Выполнить необходимые разрезы, проставить размеры (формат А3).
- 7. Построить аксонометрическую проекцию детали с вырезом 1/4 детали (формат А3).
- 8. Выполнить сложные разрезы (ступенчатый и ломаный) (два формата А4).
- 9. Вычертить:

болт, гайку, шайбу по размерам, установленным в соответствующих стандартах. Изобразить эти детали в болтовом соединении;

шпильку, гнезда под шпильку и шпилечное соединение с шайбой и гайкой по размерам, установленным в соответствующих стандартах (формат A2).

10. Выполнить:

рабочие чертежи деталей, входящих в сборочную единицу (форма тыА3, А4). рабочий чертеж сборочной единицы (формат А2). спецификацию (форматА4).

- 11. Выполнить рабочие чертежи деталей по чертежу общего вида сборочной единицы (формат A1).
- 12. Выполнение рабочего чертежа детали в AutoCAD.

Вопросы к заданиям в тестовой форме к текущему контролю

- 1. Что называется эпюром Монжа?
- 2. Какой чертеж называется комплексным?
- 3. Как называются и обозначаются основные плоскости проекций?
- 4. Что такое линия связи?
- 5. Как построить недостающую проекцию точки по двум заданным?
- 6. Какие координаты можно определить по горизонтальной (фронтальной) проекции точки?
 - 7. Что называется координатами точки пространства в декартовой системе координат?
 - 8. Чем определяются проекции прямой линий?

- 9. Какое положение относительно плоскостей проекций может занимать прямая линия?
 - 10. Какая прямая называется прямой общего положения?
 - 11. Какая прямая называется прямой уровня?
- 12. Как располагаются на чертеже проекции горизонтали, фронтали и профильной прямой?
 - 13. Что называется проецирующей прямой?
- 14. Как располагаются на чертеже проекции горизонтально проецирующей, фронтально-проецирующей, профильно-проецирующей прямых?
- 15. Указать признаки, на основании которых можно определить по чертежу прямую уровня, проецирующую прямую.
- 16. Какими элементами пространства можно задать плоскость? (Способы задания плоскостей).
 - 17. Как относительно плоскостей проекций может быть расположена плоскость?
 - 18. Какая плоскость называется плоскостью общего положения?
 - 19. Какие плоскости называются проецирующими?
- 20. Как располагаются на чертеже проекции горизонтально-проецирующей, фронтально-проецирующей и профильно-проецирующей плоскости?
 - 21. Какие плоскости называются плоскостями уровня?
- 22. Как располагаются на чертеже проекции горизонтальной, фронтальной, профильной плоскостей уровня?
 - 23. Какие линий уровня плоскости вы знаете, как они изображаются на чертеже?
- 24. Какое положение на комплексном чертеже займут проекции фронтали, горизонтали в проецирующих плоскостях?
- 25. Какие плоскости можно провести через фронтально проецирующую, горизонтально проецирующую прямые?
 - 26. Можно ли провести проецирующую плоскость через прямую общего положения?
 - 27. Что называется поверхностью?
 - 28. Какие способы задания поверхности вы знаете?
 - 29. Что называется образующей поверхности?
 - 30. Что называется направляющей поверхности?
 - 31. Что называется линейчатой поверхностью?
 - 32. Какие поверхности называются не линейчатыми?
- 33. Какие поверхности называются гранными, как они образуются? Задание на чертеже. Точка на поверхности.
 - 34. Какие поверхности называются развертываемыми, не развертываемыми?
- 35. Изображение на чертеже конической и цилиндрической поверхностей. Точка на поверхности.
 - 36. Как образуется поверхность вращения?
- 37. Как построить недостающую поверхность точки, принадлежащую поверхности вращения.
 - 38. Назовите поверхности образованные вращением окружности.
 - 39. Назовите поверхности вращения с прямолинейной образующей.
 - 40. Какие задачи называются позиционными?
 - 41. Взаимное положение прямых:
 - а) пересекающиеся прямые;
 - b) параллельные прямые;
 - с) скрещивающиеся прямые.
- 42. Как построить недостающую проекцию точки, принадлежащую плоскости, поверхности?
 - 43. Какая прямая принадлежит плоскости?
- 44. Как построить недостающую проекцию линии, принадлежащеи плоскости поверхности
 - 45. Какая прямая параллельна плоскости?

- 46. Как относительно друг друга могут быть расположены в пространстве прямая линия и плоскость?
- 47. Какова последовательность решения на комплексном чертеже задачи на пересечение прямой с плоскостью?
- 48. Как с помощью конкурирующих точек можно определить видимость при пересечении прямой с плоскостью?
 - 49. Какое взаимное положение могут занимать плоскости?
 - 50. Какие плоскости называются параллельными?
 - 51. По какой линии пересекаются две:
 - а) фронтально проецирующие плоскости;
 - b) горизонтально проецирующие плоскости.
 - 52. Как определяется видимость двух плоскостей при их пересечении?
- 53. Как строятся проекции линии пересечения поверхностей пирамиды, призмы, конуса, цилиндра и сферы проецирующими плоскостями?
 - 54. Какие линии могут быть получены в сечении:
 - а) прямого кругового конуса;
 - b) прямого кругового цилиндра;
 - с) сферы.
 - 55. Как решаются задачи на пересечение прямой с поверхностями:
 - а) пирамиды;
 - b) призмы;
 - с) конуса;
 - d) цилиндра;
 - е) сферы.
 - 56. Какие способы используют для решения задач на пересечение поверхностей?
 - 57. Какие поверхности называются соосными?
 - 58. По каким линиям пересекаются соосные поверхности вращения?
- 59. Назовите условия, необходимые для построения линии пересечения поверхностей методом сфер.
 - 60. Как выбирается центр сферических плоскостей?
 - 61. Как выбирается минимальный радиус сферы?
 - 62. В сторону какой из поверхностей должна быть направлена линия пересечения?
- 63. По каким линиям пересекаются два прямых круговых цилиндра одинакого диаметра?
 - 64. Какие задачи называются метрическими?
 - 65. В какие основные группы можно объединить все метрические задачи?
 - 66. Перечислите четыре исходные задачи преобразования чертежа.
- 67. Как нужно провести новую ось X, чтобы преобразовать прямую общего положения:
 - а) во фронталь;
 - b) в горизонталь.
- 68. Как нужно провести новые оси X и X , чтобы прямую общего положения преобразовать в:
 - а) горизонтально проецирующую прямую;
 - b) фронтально проецирующую прямую.
- 69. Какие линии в плоскости необходимо провести и как провести новую ось X относительно этих линий, чтобы плоскость нового положения преобразовать в:
 - а) горизонтально проецирующую, б) фронтально проецирующую плоскость.
- 70. Как провести новую ось X, чтобы проецирующую плоскость преобразовать в плоскость уровня?
 - 71. На основании какой задачи преобразование чертежа решаются задачи определение:
 - а) расстояние между двумя точками;
 - b) длины отрезка прямой;
 - с) расстояние от точки до прямой;

- d) расстояния между параллельными прямыми;
- е) расстояния между скрещивающимися прямыми;
- f) величины плоской фигуры;
- g) высоты пирамиды;
- h) расстояния между параллельными плоскостями.
- 72. Что называется разверткой поверхности?
- 73. Какие поверхности называются: а) развертываемыми, б) не развертываемыми.
- 74. Перечислите основные свойства разверток.
- 75. Как строятся развертки?
 - а) конуса вращения;
 - b) цилиндра вращения;
 - с) наклонного конуса;
 - d) наклонного цилиндра;
 - е) пирамиды;
 - f) призмы прямой и наклонной.
- 76. Какие поверхности можно развернуть с помощью способа раскатки?
- 77. Какие поверхности можно развернуть с помощью способа нормального сечения?
- 78. Какие поверхности можно развернуть, используя метод триангуляции?
- 79. Какую форму имеет развертка поверхности прямого кругового конуса?
- 80. Что собой представляет развертка боковой поверхности прямого кругового цилиндра?
 - 81. Какие форматы чертежей установлены ГОСТом?
 - 82. Какими линиями выполняют внешнюю и внутреннюю рамки чертежа?
 - 83. Как образуются дополнительные форматы, и как производится их обозначение?
 - 84. Определение масштаба, его назначение?
 - 85. Какие масштабы установлены ГОСТом?
 - 86. Перечислите ряд масштабов увеличения и уменьшения.
 - 87. Какие линии при обводке чертежей предусмотрены ГОСТом?
- 88. В зависимости от чего выбирают длину штрихов в штриховых и штрих пунктирных линиях?
- 89. Какие размеры шрифтов устанавливает стандарт, и какими параметрами определяется размер шрифта?
 - 90. Какое изображение предмета называется видом?
 - 91. Как получают изображение предмета на плоскость?
 - 92. Как располагают изображение предмета на чертеже?
 - 93. Какие названия присвоены видам на основных плоскостях проекции?
 - 94. Назовите основные виды? Как они располагаются на чертеже?
 - 95. Какие виды требуют обозначения на чертеже?
 - 96. Какое изображение на чертеже применяется в качестве главного?
 - 97. Какое изображение предмета на чертеже принимают в качестве главного вида?
- 98. Какой надписью сопровождается изображение вида на чертеже? Размер шрифта надписи?
 - 99. Когда изображение вида на чертеже сопровождается надписью?
- 100. Как указывается направление взгляда на изображаемую поверхность при выполнении вида? Размеры...?
 - 101. Как отмечается на чертеже дополнительный вид?
 - 102. Когда дополнительный вид не требует обозначения?
 - 103. Что называется местным видом?
 - 104. Как располагаются на чертеже местные виды и как их подписывают?
 - 105. Какое изображение называется разрезом?
 - 106. Для чего применяются на чертежах разрезы?
- 107. Как указывают на чертеже положение секущих плоскостей при обозначении разрезов?
 - 108. Какую линию применяют для обозначения секущей плоскости? Её размеры?

- 109. Как указывается направление взгляда при выполнении разреза?
- 110. Какие буквенные надписи применяются для обозначения разрезов?
- 111. Какой разрез называется простым?
- 112. Как разделяют разрезы в зависимости от положения секущих плоскостей?
- 113. В каком случае вертикальный разрез называется фронтальным, а в каком случае профильным?
 - 114. Какой разрез называется местным? Как он отделяется от вида?
 - 115. Как разделяют разрезы в зависимости от числа секущих плоскостей?
 - 116. Какие разрезы называются сложными?
 - 117. Какие разрезы называются ломанными?
 - 118. Какая условность применяется при выполнении сложных ломаных разрезов?
 - 119. Какие разрезы называются ступенчатыми?
 - 120. Для чего применяют местные разрезы?
 - 121. В каких случаях обозначают простые разрезы?
 - 122. Какие разрезы на чертеже не обозначаются?
 - 123. В каких случаях рекомендуется соединять на чертеже часть вида и часть разреза?
- 124. Какие существуют правила для выполнения изображений, содержащих половину вида и половину соответствующего разреза?
 - 125. В чем заключается особенность изображения в разрезе детали с тонкими ребрами?
 - 126. Что называется сечением?
 - 127. Для чего на чертежах применяются сечения?
 - 128. Как называются сечения в зависимости от их расположения на чертеже?
 - 129. Линиями какой толщины обводят наложенные и вынесенные сечения?
 - 130. Как называются сечения в зависимости от их расположения на чертежах?
 - 131. Как выполняют сечение, если оно представляет собой симметричную фигуру?
 - 132. Какими линиями изображают контур наложенного сечения?
 - 133. Как обозначают вынесенные сечения? Как оно выполняется?
 - 134. В каких случаях сечение сопровождают надписью?
 - 135. В каких случаях сечения не подписываются?
 - 136. В каких случаях сечение следует заменить разрезом?
- 137. Как показывают на разрезе тонкие стенки и ребра жесткости, если секущая плоскость направлена вдоль их длинной стороны?
 - 138. Какие детали при продольном разрезе показывают не рассеченными?
 - 139. Под каким углом наклонные параллельные линии штриховки к оси изображения?
- 140. Как выбирают направление линии штриховки и расстояние между ними для разных изображений (разрезов, сечений) предмета?
- 141. Как следует наносить размерные и выносные линии при указании размеров: прямолинейного отрезка, угла, дуги окружности?
- 142. На какое расстояние, должны выходить выносные линии за концы стрелок размерной линии?
 - 143. Чему равно минимальное расстояние между размерной линией и линией контура?
 - 144. Как проставляется размер цилиндрического отверстия при различных диаметрах?
- 145. Как проставляется размер, если симметричная деталь изображена только до оси симметрии? Если деталь изображена с разрывом?
- 146. Как следует располагать размерные числа, если имеется несколько параллельных линий?
 - 147. Как проставляются размеры радиусов?
 - 148. Как нанести размеры квадрата?
 - 149. Как построить размер фаски, выполненной под углом 45^{0} , под углом 60^{0} ?
 - 150. Как проставляются размеры нескольких одинаковых элементов?
 - 151. Уклон, конусность. Как они рассчитываются?
 - 152. Как построить на чертеже уклон, конусность?
 - 153. Что такое сопряжение? Элементы сопряжения?
 - 154. Какие виды аксонометрии вы знаете?

- 155. Как расположены оси в изометрии, диметрии?
- 156. Как построить в изометрии по координатам точку, прямую, плоскость?
- 157. Как выполняется штриховка в изометрии?
- 158. Разъемные и неразъемные соединения?
- 159. Какими параметрами характеризуется резьба?
- 160. Как разделяют резьбу по назначению?
- 161. Перечислите крепежные резьбы. Какой профиль имеют крепежные резьбы.
- 162. На каком расстоянии допускается наносить сплошную тонкую линию от контура при изображении резьбы?
- 163. Изображения наружной и внутренней резьб?
- 164. Как изображают границу резьбы на стержне и в отверстии?
- 165. Как определить длину болта для болтового соединения?
- 166. Как рассчитать длину ввинчиваемого участка и рабочую длину шпильки?
- 167. Левая и правая резьба?
- 168. Определение шага и хода резьбы?
- 169. Обозначение резьб с крупным и мелким шагами?
- 170. Обозначение многозаходных резьб?
- 171. Условные обозначения стандартных резьб?
- 172. Специальные и нестандартные резьбы?
- 173. Исполнения болтов, гаек, шайб?
- 174. Изображения болтов, гаек, шайб по размерам ГОСТов?
- 175. Условные обозначения болтов, гаек, шайб?
- 176. Расчет болтового соединения по относительным размерам?
- 177. Изображение шпилек. Выбор участка 1, предназначенного для ввинчивания в основную деталь, в зависимости от ГОСТов. Расчет рабочей длины шпильки?
 - 178. Что называется изделием?
 - 179. Какие виды изделий устанавливает стандарт?
 - 180. Какое изделие называется деталью?
 - 181. Какое изделие называется сборочной единицей?
 - 182. Из каких изделий может состоять сборочная единица?
- 183. Как подразделяют изделия в зависимости от наличия или отсутствия в них составных частей?
 - 184. Какие изделия относят к покупным, к вновь разрабатываемым?
 - 185. Какие виды конструкторских документов устанавливает стандарт?
 - 186. Какие стадии разработки конструкторских документов устанавливает стандарт?
- 187. Какой конструкторский документ называется чертежом детали? На какой стадии разработки он является обязательным?
- 188. Какой конструкторский документ называется чертежом общего вида? На каких стадиях разработки конструкторских документов он может выполняться? На какой стадии разработки он является обязательным?
- 189. Какой конструкторский документ называется сборочным чертежом? На какой стадии разработки он выполняется?
- 190. Чем сборочный чертеж отличается от чертежа общего вида? Какие конструкторские документы принимаются за основные для деталей, для сборочных единиц?
 - 191. Какое назначение имеет спецификация?
 - 192. На каких форматах выполняется спецификация?
 - 193. Из каких разделов состоит спецификация?
- 194. В каком порядке располагаются разделы в спецификации? В каком порядке в спецификации производится запись изделий в разделе «Стандартные изделия»?
 - 195. Какие поверхности называются сопрягаемыми?
- 196. Какое изображение называется дополнительным видом? Как его оформляют на чертеже?
 - 197. Какое изображение называют местным видом? Как его оформляют на чертеже?

- 198. Что называется выносным элементом? Как и в каком месте поля чертежа оформляют его изображение?
- 199. Как подразделяются сечения, не входящие в состав разрезов? Какими линиями изображают эти сечения на чертежах?
 - 200. Как располагают сечения на чертежах?
 - 201. В каких случаях вместо сечения следует применять разрез?
 - 202. Какие упрощения применяют для сокращения количества изображений на чертеже?
 - 203. Как оформляют групповой чертеж?
 - 204. Какие размеры указывают на чертеже общего вида, сборочном чертеже?
- 205. Каковы правила нанесения номеров позиций деталей на чертеже общего вида, сборочном чертеже?
- 206. Как и какими линиями на сборочном чертеже допускается изображать перемещающиеся части изделия, пограничные изделия?
- 207. Как выполняют чертеж изделия при совместной обработке его отдельных элементов до сборки?
 - 208. В каком случае отверстия под штифты или винты не изображают на чертеже детали?
- 209. Как изображают изделие, расположенное за винтовой пружиной, выполненной без разреза, в разрезе, упрощенно?

7.4. Соответствие шкалы оценок и уровней сформированных компетенций

Уровень сформированных компетенций	Оценка	Пояснения
Высокий	отлично	Теоретическое содержание курса освоено полностью, все предусмотренные программой обучения учебные задания выполнены. Система фундаментальных знаний в области конструктивногеометрического моделирования, выполнения и чтения чертежей различного назначения, эскизов деталей и сборочных единиц, оформления конструкторской документации полностью сформирована. Обучающийся демонстрирует готовность применять систему фундаментальных знаний (математических, естественнонаучных, инженерных и экономических) для идентификации, формулирования и решения технических и технологических проблем эксплуатации транспортнотехнологических машин и комплексов.
Базовый	хорошо	Теоретическое содержание курса освоено полностью, все предусмотренные программой обучения учебные задания выполнены с незначительными замечаниями. Система фундаментальных знаний в области конструктивногеометрического моделирования, выполнения и чтения чертежей различного назначения, эскизов деталей и сборочных единиц, оформления конструкторской документации сформирована. Обучающийся способен применять систему фундаментальных знаний (математических, естественнонаучных, инженерных и экономических) для идентификации, формулирования и решения технических и технологических проблем эксплуатации транспортно-технологических машин и комплексов.
Пороговый	удовлетво-	Теоретическое содержание курса освоено частично, боль-

Уровень сформированных компетенций	Оценка	Пояснения
	рительно	шинство предусмотренных программой обучения учебных заданий выполнено, в них имеются ошибки. Обучающийся способен под руководством применять систему фундаментальных знаний (математических, естественнонаучных, инженерных и экономических) для идентификации, формулирования и решения технических и технологических проблем эксплуатации транспортнотехнологических машин и комплексов.
Низкий	неудовле- творитель- но	Теоретическое содержание курса не освоено, большинство предусмотренных программой обучения учебных заданий либо не выполнены, либо содержат грубые ошибки; дополнительная самостоятельная работа над материалом не привела к какому-либо значительному повышению качества выполнения учебных заданий. Обучающийся не способен применять систему фундаментальных знаний (математических, естественнонаучных, инженерных и экономических) для идентификации, формулирования и решения технических и технологических проблем эксплуатации транспортно-технологических машин и комплексов.

8. Методические указания для самостоятельной работы обучающихся

Самостоятельная работа — планируемая учебная, учебно-исследовательская работа студентов, выполняемая во внеаудиторное (аудиторное) время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия (при частичном непосредственном участии преподавателя, оставляющем ведущую роль в контроле за работой студентов). Самостоятельная работа студентов в вузе является важным видом их учебной и научной деятельности.

Основными видами самостоятельной работы обучающихся по дисциплине являются:

- подготовка к текущему контролю (практические задания);
- подготовка к текущему контролю (задания в тестовой форме);
- выполнение контрольной работы (для обучающихся заочной формы обучения);
- подготовка к промежуточному контролю (экзамену).

Выполнение практического задания (графической работы) представляет собой вид самостоятельный работы, направленный на закрепление обучающимися изученного теоретического материала на практике. Заключается в выполнении рабочих чертежей деталей по чертежу общего вида сборочной единицы.

Задания в тестовой форме сформированы по всем разделам дисциплины.

Данные тесты могут использоваться:

- обучающимися при подготовке к зачету в форме самопроверки знаний;
- преподавателями для проверки знаний в качестве формы текущего контроля на практических занятиях;
- для проверки остаточных знаний обучающихся, изучивших данный курс.

Задания в тестовой форме рассчитаны на самостоятельную работу без использования вспомогательных материалов, то есть при их выполнении не следует пользоваться учебной и другими видами литературы. Прочитав задание, следует выбрать правильный ответ.

На выполнение теста отводится ограниченное время. Оно может варьироваться в зависимости от уровня тестируемых, сложности и объема теста. Как правило, время выполнения тестового задания определяется из расчета 45-60 секунд на один вопрос.

Содержание тестов по дисциплине ориентировано на подготовку обучающихся по основным вопросам курса. Уровень выполнения теста позволяет преподавателям судить о ходе самостоятельной работы обучающихся в межсессионный период и о степени их подготовки к экзамену.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Для успешного овладения дисциплиной используются следующие информационные технологии обучения:

- При проведении лекций используются презентации в программе MSOffice (PowerPoint), осуществляется выход на профессиональные сайты, используются видеоматериалы различных интернет-ресурсов.
- Практические занятия по дисциплине проводятся с использованием демонстрационных образцов, графиков, таблиц и нормативно-технической документации.
 - В случае дистанционного изучения дисциплины и самостоятельной работы используется ЭИОС (MOODLE)

В процессе изучения дисциплины учебными целями являются первичное восприятие учебной информации, ее усвоение, запоминание, а также структурирование полученных знаний и развитие интеллектуальных умений, ориентированных на способы деятельности репродуктивного характера. Посредством использования этих интеллектуальных умений достигаются узнавание ранее усвоенного материала в новых ситуациях, применение абстрактного знания в конкретных ситуациях.

Для достижения этих целей используются в основном традиционные информативно-развивающие технологии обучения с учетом различного сочетания пассивных форм (лекция, консультация, самостоятельная работа) и репродуктивных методов обучения (повествовательное изложение учебной информации, объяснительно-иллюстративное изложение) и практических методов обучения (выполнение практических работ).

Университет обеспечен необходимым комплектом лицензионного программного обеспечения:

- семейство коммерческих операционных систем семейства Microsoft Windows;
- офисный пакет приложений Microsoft Office;
- программная система для обнаружения текстовых заимствований в учебных и научных работах «Антиплагиат.ВУЗ»;

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Реализация учебного процесса осуществляется в специальных учебных аудиториях университета для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Все аудитории укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории. При необходимости обучающимся предлагаются наборы демонстрационного оборудования и учебно-наглядных пособий, обеспечивающие тематические иллюстрации.

Самостоятельная работа обучающихся выполняется в специализированной аудитории, которая оборудована учебной мебелью, компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационнообразовательную среду УГЛТУ.

Самостоятельная работа обучающихся выполняется в специализированной аудитории, которая оборудована учебной мебелью, компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационнообразовательную среду УГЛТУ.

Есть помещение для хранения и профилактического обслуживания учебного оборудования.

Требования к аудиториям

треобиния к иубинориям			
Наименование специальных помещений и помеще-	Оснащенность специальных помещений и поме-		
ний для самостоятельной работы	щений для самостоятельной работы		
Помещение для лекционных и практических занятий, групповых и индивидуальных консультаций, текущей и промежуточной аттестации.	Учебная мебель. Переносное оборудование: - демонстрационное мультимедийное оборудование (ноутбук, экран, проектор); - комплект электронных учебно-наглядных материалов (презентаций) на флеш-носителях, обеспечивающих тематические иллюстрации. Демонстрационные модели по начертательной геометрии. Комплекты плакатов и стендов. Наборы деталей для черчения, измерительные инструменты: штангенциркули, нутромеры, штангензубомеры.		
Помещения для самостоятельной работы	Столы, стулья, видеокамера, диктофон, панель плазменная, твердомер ультразвуковой, твердомер динамический, толщиномер покрытый «Константа К5», уклономер, дальномер лазерный, угломер электронный. Компьютеры (2 ед.), принтер офисный. Рабочие места студентов оснащены компьютерами с выходом в сеть Интернет и электронную информационную образовательную среду.		
Помещение для хранения и профилактического обслуживания учебного оборудования	Стеллажи. Раздаточный материал. Переносная мультимедийная установка (проектор, экран). Расходные материалы для ремонта и обслуживания техники. Места для хранения оборудования.		